

Mary Bishai for the Beam Working Grp (BNL, FNAL)

Coals

Focusing system

Beam Energy Optimization

Decay Pipe

Off-axis?

Beam design

Civil

Summary

DUSEL Beamline Working Group Report DUSEL Collaboration Mtg, UC Davis, 2/27/09

Mary Bishai for the Beam Working Grp (BNL, FNAL)

February 27, 2009

Outline

DUSEL Beamline Working Group Report

Mary Bisha for the Bea Working Gr (BNL, FNA

Goal

Focusing system optimization

Beam Energy Optimization

Decay Pipe Optimizatior

Off-axis?

Beam designs with WCC

Civil construction

Summary

- 1 Goals
- 2 Focusing system optimization
- 3 Beam Energy Optimization
- 4 Decay Pipe Optimization
- 5 Off-axis?
- 6 Beam designs with WCC
- 7 Civil construction
- 8 Summary

Goals of the DUSEL BL Working Group

DUSEL Beamline Working Group Report

Mary Bisha for the Bear Working Gr (BNL, FNA

${\sf Goals}$

Focusing system optimization

Beam Energy Optimization

Decay Pipe Optimization

Off-axis

with WCC

Civil construction

Civil

Produce a conceptual design by 2010

CD1 objectives: define requirements and evaluate alternatives

We have been charged by DOE to produce the plan for getting to CD1 by March 09 (Gina et. al):

- 1.1 Technical Components 1.1.1 Primary Beam
 - 1.1.2 Target Hall Components
 - 1.1.3 Decay Tunnel and Absorber
 - L.1.5 Decay Tunnel and Absorber
 - 1.1.4 Radiological Shielding and Control
 - 1.1.5 Infrastructure and System Integration
- 1.2 Civil Construction
 - 1.2.1 Site Preparation
 - 1.2.2 Tunnels and Halls
 - 1.2.3 Service Buildings and Outfitting
- 1.3 Beam Instrumentation and Near Detector
 - 1.3.1 Specification and Design
 - 1.3.2 Construction
 - 1.3.3 Installation

Work summarized here addresses portions of 1.1.1, 1.1.2, 1.1.3, 1.2.1 and 1.2.2

Requirements of the FNAL/Homestake Beam

DUSEL
Beamline
Working
Group Report

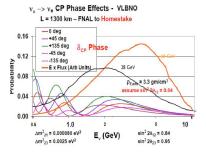
Mary Bishai for the Bean Working Grp (BNL, FNAL

Goals

Focusing system optimization

Beam Energy Optimization

Decay Pipe Optimization


Off-axis?

with WCC

construction

Summary

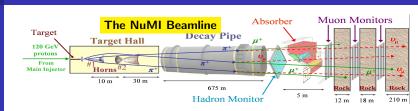
The design specifications of a new WBLE beam based at the Fermilab MI are driven by the physics of $\nu_{\mu} \rightarrow \nu_{e}$ oscillations:

Requirements:

- -Maximal possible neutrino fluxes to encompass the 1st and 2nd oscillation nodes, with maxima at 2.4 and 0.8 GeV.
- -High purity ν_{μ} beam with negligible ν_{e}

- $L=1300\ km$
- -Minimize the neutral-current feed-down contamination at lower energy, therefore minimizing the flux of neutrinos with energies greater than 5 GeV is highly desirable. MINOS long-baseline $\nu_{\mu} \rightarrow \nu_{\rm e}$ search finds (results announced TODAY):

 $rac{
m NC~from~tails(>5GeV)}{
m All~NC} \sim 0.5-0.6$



DUSEL Beam design options

DUSEL Beamline Working Group Report

Goals

- Strategy 1: Increase low energy flux at the oscillation maximum through improved:
 - 1a) target design
 - 1b) focusing
 - 1c) beam energy
 - 1d) decay pipe geometry
- Strategy 2: Improve S:B at low energies by reducing high energy tail using:
 - 2a) beam energy 2b) beam plugs,
 - 2c) off-axis beams
 - Needs work 50-80% done > 80% done

Mary Bishai for the Beam Working Grp (BNL, FNAL

Caala

Focusing system optimization

Beam Energy Optimization

Decay Pipe

Off-axis

Beam design

Civil

Summary

Focusing/targeting system studies

Focusing system alternatives

DUSEL Beamline Working Group Report

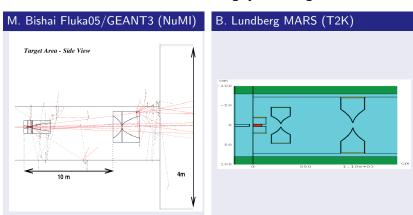
Mary Bisha for the Bean Working Gr (BNL, FNAL

Goals

Focusing system optimization

Beam Energ Optimization

Decay Pipe Optimizatio


Off-axis

with WCC

Civil construction

Summary

Two INDEPENDANT efforts on focusing system designs

Both designs use fully embedded carbon targets and similar horn 2

In a 2 horn system, optimal separation = 6m (both designs)

Beam spectra from 2 alternatives

DUSEL
Beamline
Working
Group Report

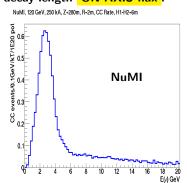
Mary Bisha for the Bean Working Gr (BNL, FNAL

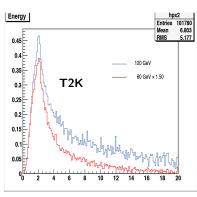
Goal

Focusing system optimization

Beam Energy Optimization

Decay Pipe Optimization


Off-axis


Beam designs with WCC

Civil construction

Summary

Using a decay pipe of 4m diameter and 250/280m (T2K/NuMI) decay length ON AXIS flux:

Simulation	0.8 GeV Rate	Peak Rate (E)	6 GeV Rate		
120 GeV	CC events/GeV/kT/1E20 pot at 1300km				
NuMI	1.7	4.6 (2.0 GeV)	0.6		
T2K	1.2	6.2 (2.4 GeV)	1.3		

Whats a beam "plug"?

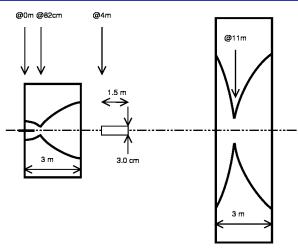
DUSEL Beamline Working Group Report

Mary Bisha for the Bear Working Gr (BNL, FNAL

Goal:

Focusing system optimization

Beam Energy Optimization


Decay Pipe Optimization

Off-axi

Beam design

Civil

Summary

In 2001, Brett Viren (following up on studies at IHEP) found that a 1.5cm radius graphite target placed between the 2 horns reduced the high energy tails in NuMI LE beam by > 30 %.

DUSEL/NuMI spectra with different plugs

DUSEL
Beamline
Working
Group Report

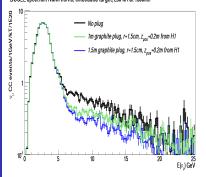
Mary Bisha for the Bear Working Gr (BNL, FNAL

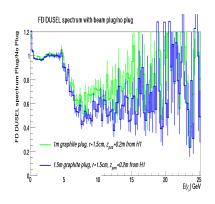
Goal

Focusing system optimization

Beam Energy Optimization

Decay Pipe Optimizatio


Off-axis


Beam designs with WCC

Civil construction

Summary

DUSEL spectrum NuMI horns, embedded target, 250 kA at 1300km

With 1.5m plug

$${
m \frac{plug}{no\ plug}}(>5{
m GeV})=0.62$$

$$\frac{\text{plug}}{\text{no plug}}$$
 (< 5GeV) = 0.99

Beam plugs Pros and Cons

DUSEL Beamline Working Group Report

Focusing system optimization

Pros:

- Most effective tool that reduces the HE flux exactly where you need it > 5 GeV without any impact at low energy. Current design reduced NC background in WCC simulation by -18%
 - Might give you more ν at very low energies < 0.5 GeV good for solar oscillations.
 - Tunable different plugs can be used.

Cons:

- Requires expensive material R&D and engineering
- Complicates operating need to change out plugs.
- Complicates beamline geometry for Near-Far extrapolation

May not be necessary at lower primary beam energies

Mary Bishai for the Beam Working Grp (BNL, FNAL

Coole

Focusing system optimization

Beam Energy Optimization

Decay Pipe

Off-axis

Beam design

Civil

CONSTRUCTIO

Summary

Proton beam energy optimization

Impact of primary proton energy on spectrum

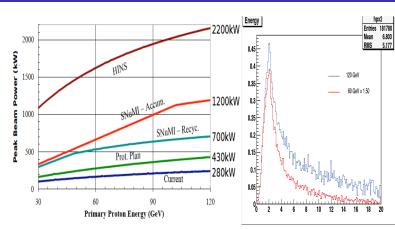
DUSEL
Beamline
Working
Group Report

Mary Bisha for the Bear Working Gr (BNL, FNAL

Goal

Focusing system optimization

Beam Energy Optimization


Decay Pipe Optimizatio

Off-axis

Beam designs with WCC

construction

Summary

Lowering the beam energy is very effective at reducing HE tails and increases flux at lower beam energies - BUT we lose power!

Design beamline to operate at 60-120 GeV. Optimize design at 90 GeV

Mary Bishai for the Beam Working Grp (BNL, FNAL)

Coole

Focusing system

Beam Energy Optimization

Decay Pipe Optimization

Off-axis7

Beam design

Civil

construction

Summary

Decay pipe optimization

Decay pipe shape optimization

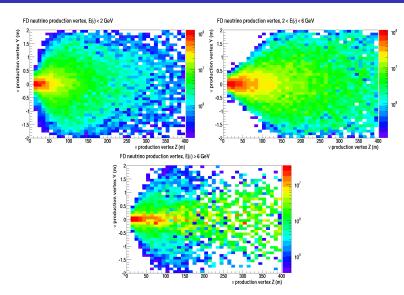
DUSEL Beamline Working Group Report

Mary Bisha for the Bea Working G (BNL, FNA

Goals

Focusing system optimization

Beam Energy Optimization


Decay Pipe Optimization

Off-axis

Beam design

Civil construction

Summary

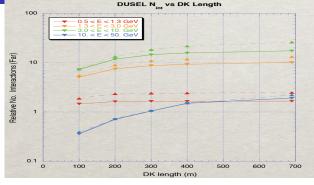
Decay pipe dimensions

DUSEL Beamline Working Group Report

Mary Bisha for the Bear Working Gr (BNL, FNA

Goals

Focusing system optimization


Beam Energy Optimization

Decay Pipe Optimization

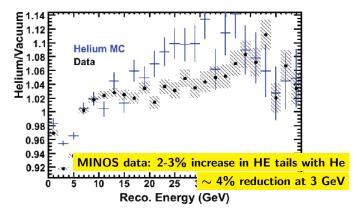
Off-axis

with WCC

Civil construction

DP length	Rate 0 — 2 GeV	Rate 2 — 6GeV	Rate > 6GeV
180m	3.1	11	6.3
280m	3.5	14	8.1
380m	3.6	16	9.7
480m	3.7	17	11
580m	3.7	17	11

Decay pipe dimensions: 2m radius, 300 \pm 50 m length


What do we fill the decay pipe with?

DUSEL Beamline Working Group Report

Decay Pipe Optimization

The decay pipe was the single most expensive element in the NuMI beamline. An evacuated DUSEL decay pipe \equiv \$ \$

■ To reduce costs, design a gas filled decay pipe at ~ 1 atm.

Nitrogen = 13% more heat in DP walls, 15% loss at peak (3 GeV) $_{\odot,\odot,\odot}$

Mary Bishai for the Beam Working Grp (BNL, FNAL)

Coole

Focusing system

Beam Energy Optimization

Decay Pipe

Off-axis?

Beam designs

Civil

CIVII

Summary

Going off-axis

Going off-axis

DUSEL
Beamline
Working
Group Report

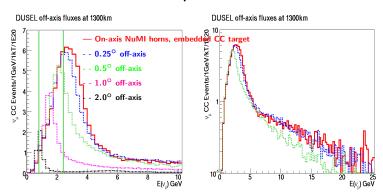
Mary Bishai for the Bean Working Grp (BNL, FNAL

Goal

Focusing system optimization

Beam Energy Optimization

Decay Pipe Optimization


Off-axis?

Beam designs with WCC

Civil construction

Summary

Another alternative to cutting down the high energy tails is going off-axis - redo calculation with optimized on-axis beam:

On axis flux is best for broad-band coverage

Off-Axis Pros and Cons

DUSEL Beamline Working Group Report

Mary Bish for the Bea Working G (BNL, FNA

Goal

Focusing system optimization

Beam Energy Optimization

Decay Pipe Optimization

Off-axis?

Beam designs with WCC

Civil constructio

Summary

Pros:

- Effective at reducing HE tails.
- lacksquare At high angles $>1^\circ$ enhances flux at the 2nd oscillation maxima.
- NuMI/MiniBoone data confirms simulation predictions off-axis

Cons:

- Throwing away beam flux at 1st osc maximum
- Limited tunability WE CANT MOVE THE BEAMLINE!
- Limited broad-band spectrum.

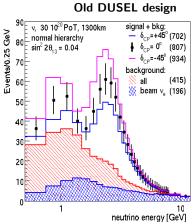
Mary Bisha for the Bear Working Gr (BNL, FNAL

Goal

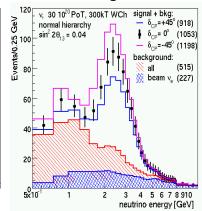
Focusing system optimization

Beam Energy Optimization

Decay Pipe


Off-axis?

Beam designs with WCC


Civil construction

Summary

Embedded CC target in NuMI horns with 6m separation, cylindrical decay pipe with 4m diameter, 380m length, 120 GeV beam.

New design

Mary Bishai for the Bean Working Grp (BNI ENAL

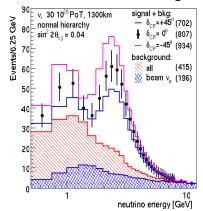
Goal

Focusing system optimization

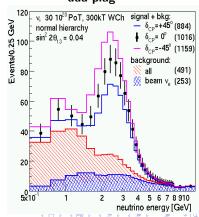
Beam Energy Optimization

Decay Pipe

Off-axis?


Beam designs with WCC

Civil construction


Summary

Embedded CC target in NuMI horns with 6m separation, cylindrical decay pipe with 4m diameter, 380m length, 120 GeV beam.

Old DUSEL design

add plug

Mary Bishai for the Beam Working Grp (BNL, FNAL

Goals

Focusing system optimization

Beam Energy Optimization

Decay Pipe Optimization

Off-axis

Beam desigi with WCC

Civil construction

Summary

Summary from Weekly Civil Coordination Meetings

Goals:

- Establish preferred facility layout
- Obtain first level understanding of facility construction costs and duration.
- Prepare civil design portion of CDR

Conceptual Facility Layout

Sam Childress

DUSEL Beamline Working Group Report

Mary Bisha for the Bear Working Gr (BNL, FNAL

Goals

Focusing system

Beam Energy Optimization

Decay Pipe Optimizatio

Beam design

Civil construction

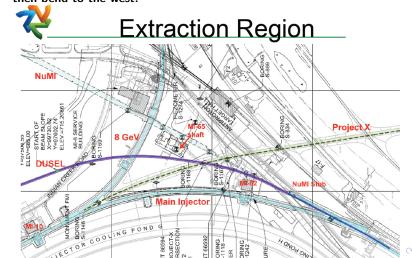
Summar

Mary Bisha for the Bear Working Gr (BNL, FNAI

Goal

Focusing system optimization

Beam Energy Optimization


Decay Pipe Optimization

Beam design

Civil construction

Summary

At least 3 proton beam extraction and bending to the west options have been eliminated. The current best choice is use NuMI extraction then bend to the west:

Scheme for keeping NoVA line intact

Peter Lucas

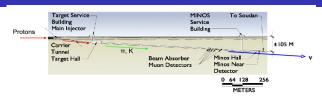
DUSEL Beamline Working Group Report

for the Bear Working Gr (BNL, FNAL

Goal

Focusing system optimizatio

Beam Energy Optimization


Decay Pine

Off-axis

Beam design with WCC

Civil construction

Summary

View looking upstream and uphill. DUSEL beam above and slightly left Looking downstream and downhill. DUSEL beamline (mostly just pipe) near ceiling

Solution: Use two wide-aperture 10 foot dipoles as a switch, bend dusel

and exit NuMI enclosure before carrier tunnel

Mary Bishai for the Beam Working Grp (BNL, FNAL)

Carl

Focusing system optimization

Beam Energy Optimization

Decay Pipe Optimizatior

Off-axis?

Beam design

Civil

construction

Summary

Summary and Conclusions

Summary

DUSEL
Beamline
Working
Group Report

Mary Bisha for the Bear Working Gr (BNL, FNAI

Goal

Focusing system optimization

Beam Energy Optimization

Decay Pipe Optimizatior

Off-axis

Beam designs with WCC

constructio

Summary

The DUSEL beam working group has been meeting weekly for 6 months under the leadership of Jeff Appel (appel@fnal.gov)

■ EXTENSIVE post-evaluation and documentation of lessons learned from NuMI (physics performance, civil construction, radiological control, legal, project management....):

http://beamdocs.fnal.gov/SNuMI-public/DocDB/DocumentDatabase

- Detailed studies of two targeting and focusing system designs. We have LO designs that can do the physics!! . But only simulated not engineered.
- Consensus on dimensions of gas filled decay pipe for input to civil: DP \sim cylindrical, $r=2^{+0.5}_{-0.2}$ m, $I=300\pm50$ m.
- We have also determined that the target hall length is < 20m details are now up to engineering, civil construction.
- **Primary proton beam power:** 90 ± 30 **GeV**. We have a preliminary primary beam extraction, transport, and semi-detailed layout.

Getting to CD1

DUSEL
Beamline
Working
Group Report

Mary Bisha for the Bear Working Gr (BNL, FNA

Goal

Focusing system optimization

Beam Energy Optimization

Decay Pipe Optimization

Off-axis

with WCC

Civil constructio

Summary

- We need targeted engineering and material R&D on target/horn material for 2 MW beam and embedded targets.
- Converge on 1-2 conceptual designs for targeting/focusing.
- Physics driven decision SOON on air/He in decay pipe for input to engineering design.
- Build on the NuMI lessons learned to produce a conceptual design of radiological shielding and control.
- Finalize a conceptual layout of the whole facility, with buildings and shafts.
- Converge on final extraction layouts with the option of preserving NuMI/NOvA.

Mary Bishai for the Beam Working Grp (BNL, FNAL)

Coole

Focusing system optimization

Beam Energy Optimization

Decay Pipe

Off-axis?

Beam design

Civil

Summary

For further discussion

NC backgrounds in the MINOS ND Data

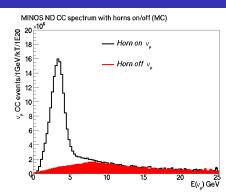
DUSEL
Beamline
Working
Group Report

Mary Bisha for the Bear Working Gr (BNL, FNAL

Goals

Focusing system optimization

Beam Energy Optimization


Decay Pipe Optimization

Off-axis?

Beam designs with WCC

Civil constructio

Summary

In the MINOS ND data we measured the background composition of $\nu_{\rm e}$ selected events with horn on/off in the region 1-8 GeV.

SEE MAYLY SANCHEZ'S W&C TALK TODAY.

 $rac{
m NC \ from \ tails}{
m All \ NC} \sim rac{
m NC \ horn \ off}{
m NC \ horn \ on} \sim 0.5 - 0.6$

Summary - lowering backgrounds

DUSEL
Beamline
Working
Group Report

Mary Bisha for the Bear Working Gr (BNL, FNA

Goa

Focusing system optimization

Beam Energy Optimization

Decay Pipe Optimizatio

Off-axis

Beam design with WCC

Civil construction

Summary

HE tails contribute 50-60% of NC background for ν_e appearance

HE tail (> 5 GeV) adjustments to Fluka05 MC

Adjustment	Effect	Comment
MINOS beam fit (Data)	$\sim +20\%$	10% more flux at < 5 GeV
He in beampipe (Data)	+3%	different beampipe geometry
1.5 m graphite plug (MC)	-38%	LE unchanged
0.5° off-axis (MC)	-38%	Less coverage at 1st maxima
p-beam $120 \rightarrow 60 \text{ GeV}$	$-46\%^{**}$	At the same power

^{**} Estimated using AGS focusing not NuMI

With 120 GeV protons, plug is the best option for lowering HE tails

Summary - improved performance

DUSEL Beamline Working Group Report

Signal type	Old oa flux	New focusing	With plug
$\nu_{\rm e}$ signal $\delta_{\rm cp} = +45$	295	403	393
$\nu_{\rm e}$ signal $\delta_{\rm cp} = 0$	395	538	525
$\nu_{\rm e}$ signal $\delta_{\rm cp}$ =-45	509	683	669
NC bkgd	202	273	224
beam $ u_{ m e}$ bkgd	196	227	253
numu	15	15?	15

Flux in the signal region by 30% compared to previous designs

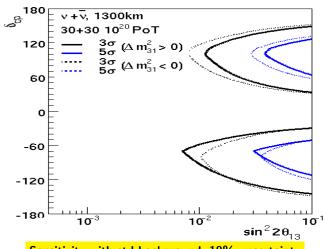
- Used NuMI horns (known performance) and optimized current and alignment for DUSEL beam.
- Fully embedded target into Horn 1
- Increased horn current from 185kA (current NuMI) to 250kA.

Mary Bisha for the Bear Working Gr (BNL, FNAI

Goals

Focusing system optimization

Beam Energy Optimization


Decay Pipe

Off-axis

Beam design

Civil constructio

Summary

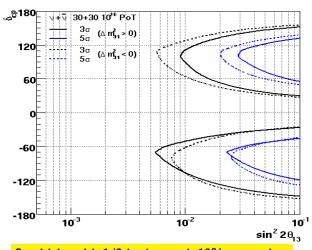
Sensitivity with std background, 10% uncertainty

Mary Bisha for the Bean Working Gr (BNL, FNAL

Goals

Focusing system

Beam Energy Optimization


Optimization

Off-axis?

Beam design

Civil constructio

Summary

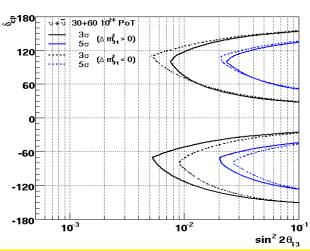
Sensitivity with 1/2 background, 10% uncertainty

Mary Bisha for the Bear Working Gr (BNL, FNAI

Goals

Focusing system optimization

Beam Energy Optimization


Optimization

Off-axis

Beam design

Civil construction

Summary

Sensitivity with default background, 10% uncertainty, double $ar{
u}$ exposure

for the Bear Working Gr (BNL, FNAI

Goals

Focusing system optimization

Beam Energy Optimization

000000

Off-axis?

with WCC

Civil

Summary

For CPV sensitivity

1/2 background $\sim \bar{\nu}$ exposure $\times 2 \equiv 3$ MW.yrs